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A Resistive Sheet Approximation for Mesh
Reflector Antennas

DAVID C. JENN, MEMBER, IEEE, A. PRATA, JR.,
WILLARD V. T. RUSCH, FeLLOW, IEEE, AND
M. R. BARCLAY

Abstract— A simplified method of estimating the equivalent surface
resistance of a reflecting mesh is presented. The equivalent resistance is
obtained from the approximate mesh reflection coefficients, which are
based on the method of averaged boundary conditions. This resistance
approximation allows for an integral equation solution for the mesh
reflector that is a simple extension of the perfectly conducting reflector.
Paraboloid radiation patterns using physical optics in conjunction with
the reflection coefficients are compared to an F-field integral equation
solution for a resistive surface. The agreement is excellent for low-to-
moderate resistance values, even in the sidelobe regions.

1. INTRODUCTION

Reflectors with mesh surfaces are often used in applications re-
quiring lightweight deployable antennas. Although a rigorous solution
of the electromagnetic mesh problem is feasible [1], it is difficult to
incorporate within the framework of a reflector scattering program
because of its complexity and excessive time requirements. Approxi-
mate formulas were derived by Astrakhan [2] based on the technique
of averaged boundary conditions. The formulas give the plane wave
reflection coefficients of the mesh for perpendicular and parallel po-
larizations as a function of the grid geometry, incidence direction,
and the electrical contact properties of the wires. They apply to cases
where the mesh wire radius is much less than the grid separations,
and the grid separations are much less than a wavelength.

While the Astrakhan formulas are suited to radiation pattern cal-
culations using the physical optics (PO) approximation, a surface
impedance is convenient for an integral equation solution. If an equiv-
alent surface resistance can be defined for a given mesh geometry,
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then a method of moments (MM) solution for the mesh currents is a
simple extension of the solution for a perfectly conducting reflector

[31.
II. MeTHOD OF ESTIMATING THE SURFACE RESISTANCE

An impedance boundary condition relates the tangential compo-
nents of the electric and magnetic fields at the surface of the scat-
terer. For a resistive sheet, which is simply an imperfect electrical
conductor, there are no magnetic currents and the discontinuities in
the fields across the sheet satisfy the following conditions [4]:

AxX(ET—E)=0 ¢Y)
AxH"—H)=J @

with
Ax (A xE,)=-n;J,p=+or — 3

where 71 is a unit vector normal to the surface pointing toward the +
side, J is the total current on the sheet, and 7, is the surface resistance
in units of ohms per square. Because it is inversely proportional to the
conductivity of the sheet, 5; = 0 is equivalent to a perfect conductor,
and when 7, = oo the sheet does not exist [4].

For reflector antenna applications the mesh geometry is chosen
so that it is a good reflector and n; will be close to zero. Then
the equivalent resistive sheet is nearly opaque, and the reflection
coefficient is given approximately by the standard plane wave formula
for an interface between air and a medium of impedance 7

N =0
R=——" 4)
1+ 1

where 7 = 377 ). For higher resistances a more accurate value of
the reflected field is given by considering the sheet to be in parallel
with the free space on the back side, in which case the reflection
coefficient is [5]

R=-_"_. o)
295 + 1

Since both n and 7 are real, a purely real estimate of R will be
needed for use in either (4) or (5). Once R is supplied, the equivalent
sheet resistance can be solved for yielding

7, 1-R
7 L+R ©
from (4), or
1-R
T ™

from (5). For %, (and therefore R) to be of use in an MM solution, it
must be independent of angle because it occurs as a load impedance
that is added to the perfect conductor MM impedance matrix [6].
To obtain a resistance from the Astrakhan formulas that is inde-
pendent of angle, consider the special case of a square grid with
perfect wire contact. Using the notation defined in [2], a Cartesian
coordinate system is established on the mesh surface with the z axis
as the surface normal and the x and y axes coincident with the two
(orthogonal) wire axes. The direction of a plane wave impinging

0018-926X/89/1100-1484$01.00 © 1989 IEEE



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 37, NO. 11, NOVEMBER 1989

MM/RESISTIVE SHEET (EQN 7)
————— PO/ASTRAKHAN

e

iy

-PLANE
=0

E
s

|
n
o

RELATIVE POWER (dB)
B
o

]
foad
(=}

L

LS

0 15 30 45
8, ANGLE FROM AXIS OF SYMMETRY (DEG)

W\/\A
I

| WA

t
~n
o

RELATIVE POWER (dB)
ES
=)

]
[=a)
o
«

8075 15 30 25
6, ANGLE FROM AXIS OF SYMMETRY (DEG)
(b)
Fig. 1. Comparison of the methods of analysis for a perfectly conducting
paraboloid. (a) E-plane. (b) H-plane. (D =20\, f/D = 0.4, cos § feed.)

on the mesh is specified by the spherical polar angles (8, ¢). For a
square grid the dependence on the azimuth incidence angle (¢) drops
out, and for most reflector antennas the angle of incidence with the
local mesh surface normal (8) will be small. Therefore, at near nor-
mal angles the parallel and perpendicular reflection coefficients of
[2] are approximately

2a a -
e _ _RE = —j— _—
RI = —R {1 J)\ In <2_"0>} . (8)

In (8), a is the grid separation in both mesh planes, ry is the radius
of the wires, and N the wavelength. Thus, an approximate value of
R for use in (6) or (7) is

R =|Rj|| =|R"|. ©)

III. RapiaTiON PATTERN CALCULATIONS

The radiation patterns of a prime focus paraboloid with a mesh
surface were calculated by two techniques. The first uses the physical
optics approximation in conjunction with the Astrakhan formulas [7].
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Fig. 2. Comparison of the methods of analysis for a paraboloidal reflec-

tor with a mesh surface: (a) E-plane. (b) H-plane. (D = 20\, f/D =
04, cos 6 feed.)

The second method is based on an MM solution of the E-field integral
equation (EFIE) for a body of revolution as reported in [8]. The
calculation of the load impedance elements to account for the surface
resistance is similar to that described in [6] and [9]. Fig. 1 compares
the PO and MM results for a perfectly conducting 20 \ paraboloid
with /D = 0.4 and a cos 6 shaped feed in both principal planes.
The agreement is good out to about 40° or so, at which point the
discrepancy can be attributed to the reflector edge. MM correctly
accounts for the change in the current near the edge, whereas PO
does not.

Fig. 2 compares the principal plane patterns of a mesh reflector
of the same geometry with mesh separations of 0.125 A and a wire
radius of 0.002 N. This corresponds to a surface resistance of 26.8
ohms per square. The agreement between MM and PO is better in
the sense that the locations of the peaks and nulls of the sidelobes are
coincident. The improvement is probably due to a diminishing of the
edge effect because electrically the reflector edge is ““softer” for the
mesh than it is for the perfect conductor. The main beam gain values
are within 0.02 dB of each other, but for larger mesh separations the
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agreement is not as good, as shown in Fig. 3. The advantage of (6)
over (7) for higher resistances is also evident in Fig. 3.

IV. ConcLusion

For certain grid geometries and electrical properties, a mesh can
be modeled accurately as a thin resistive sheet. The close agreement
in antenna gains calculated by the two methods described here begins
to break down when the surface resistance is greater than about 50
ohms per square. It is expected that significant discrepancies at wider
angles would occur at even lower values [10].

It is conceivable that an equivalent sheet resistance could be ob-
tained for rectangular grids or ones with imperfect contact at the
junctions. Difficulty occurs for these cases because the ¢ depen-
dence does not drop out of the Astrakhan formulas as it does for the
square grid. It would be necessary to define an angle (or perhaps an
range of angles) at which the Astrakhan formulas would be evalu-
ated. Since the dependence of the reflection coefficients on angle is
much stronger, it is expected that the overall agreement would not
be as good.

This method can be extended to more complex surfaces that are
comprised of both mesh and perfect conductor portions. In addition
to reflector antennas this includes mesh screens used for antenna
ground planes and electromagnetic interference suppression. It could
also be used to choose a resistive sheet that could be substituted for
mesh in the laboratory.
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Improvement of the Numerical Solution of
Dielectric Bodies with High Permittivity

AHMED A. KISHK, MEMBER, IEEE, AND
LOTFOLLAH SHAFAI, FELLOW, IEEE

Abstract— A method for improving the accuracy of the numerical so-
lution of dielectric bodies is pr d. Its utilizati kes the matrix
size independent of the relative dielectric constant and reduces its size.
It also improves the accuracy of the solution of the Miiller formulation
when the dielectric constant is high. The root mean square (rms) errors
are calculated for dielectric spheres by comparing the numerical solution
with the exact solution using Mei series. The surface current distribu-
tions are presented in magnitude and phase. The bistatic radar cross
sections of the sphere and finite cylinder are presented using different
formulations.

I. INTRODUCTION

In the past few years, a number of different methods have been
developed to compute the scattering from homogeneous dielectrics
and recently, dielectric resonators. These methods are the T-matrix
[11, [2], unimoment [3], Fredholm integral equation approach [4],
and the method of moments for the surface integral formulations [5],
[6]. Each of these methods has certain limitations in its implementa-
tion. The method of moments is the most efficient method for solving
the surface integral equations of homogeneous bodies and is easily
adaptable to different integral equations. However, the solution ac-
curacy deteriorates as the dielectric constant increases [5]. In [6],
different integral equation formulations were used to overcome this
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